217 research outputs found

    Incoherent Noise and Quantum Information Processing

    Full text link
    Incoherence in the controlled Hamiltonian is an important limitation on the precision of coherent control in quantum information processing. Incoherence can typically be modelled as a distribution of unitary processes arising from slowly varying experimental parameters. We show how it introduces artifacts in quantum process tomography and we explain how the resulting estimate of the superoperator may not be completely positive. We then go on to attack the inverse problem of extracting an effective distribution of unitaries that characterizes the incoherence via a perturbation theory analysis of the superoperator eigenvalue spectra.Comment: 15 pages, 5 figures, replaced with future JCP published versio

    Experimental Implementation of a Concatenated Quantum Error-Correcting Code

    Full text link
    Concatenated coding provides a general strategy to achieve the desired level of noise protection in quantum information storage and transmission. We report the implementation of a concatenated quantum error-correcting code able to correct against phase errors with a strong correlated component. The experiment was performed using liquid-state nuclear magnetic resonance techniques on a four spin subsystem of labeled crotonic acid. Our results show that concatenation between active and passive quantum error-correcting codes offers a practical tool to handle realistic noise contributed by both independent and correlated errors.Comment: 4 pages, 2 encapsulated eps figures. REVTeX4 styl

    Quantum Process Tomography of the Quantum Fourier Transform

    Full text link
    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented, and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently-developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive - although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors during the quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cummulative effect of small errors in the single qubit gates.Comment: 26 pages, 17 figures, four tables; in press, Journal of Chemical Physic

    Robust Control of Quantum Information

    Full text link
    Errors in the control of quantum systems may be classified as unitary, decoherent and incoherent. Unitary errors are systematic, and result in a density matrix that differs from the desired one by a unitary operation. Decoherent errors correspond to general completely positive superoperators, and can only be corrected using methods such as quantum error correction. Incoherent errors can also be described, on average, by completely positive superoperators, but can nevertheless be corrected by the application of a locally unitary operation that ``refocuses'' them. They are due to reproducible spatial or temporal variations in the system's Hamiltonian, so that information on the variations is encoded in the system's spatiotemporal state and can be used to correct them. In this paper liquid-state nuclear magnetic resonance (NMR) is used to demonstrate that such refocusing effects can be built directly into the control fields, where the incoherence arises from spatial inhomogeneities in the quantizing static magnetic field as well as the radio-frequency control fields themselves. Using perturbation theory, it is further shown that the eigenvalue spectrum of the completely positive superoperator exhibits a characteristic spread that contains information on the Hamiltonians' underlying distribution.Comment: 14 pages, 6 figure

    Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing

    Get PDF
    We describe a method for improving coherent control through the use of detailed knowledge of the system's Hamiltonian. Precise unitary transformations were obtained by strongly modulating the system's dynamics to average out unwanted evolution. With the aid of numerical search methods, pulsed irradiation schemes are obtained that perform accurate, arbitrary, selective gates on multi-qubit systems. Compared to low power selective pulses, which cannot average out all unwanted evolution, these pulses are substantially shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR techniques on homonuclear spin systems are used to demonstrate the accuracy of these gates both in simulation and experiment. Simulations of the coherent evolution of a 3-qubit system show that the control sequences faithfully implement the unitary operations, typically yielding gate fidelities on the order of 0.999 and, for some sequences, up to 0.9997. The experimentally determined density matrices resulting from the application of different control sequences on a 3-spin system have overlaps of up to 0.99 with the expected states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of Chemical Physics, in pres

    Benchmarking quantum control methods on a 12-qubit system

    Full text link
    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.Comment: 11 pages, 4 figures, to be published in PR

    Spintronics and Quantum Dots for Quantum Computing and Quantum Communication

    Get PDF
    Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected, references adde
    • …
    corecore